Noninsulin Antidiabetic Agents Effects on Blood Glucose

Intervention	Premeal Glucose	Postmeal Glucose	Typical A1C Reduction	
Oral agents				
Metformin	VV	V	1.0 percent to 2.0 percent	
Sulfonylureas	VV	٧V	1.0 percent to 2.0 perrcent	
Glinides*	V	VV	0.5 percent to 1.5 percent	
Thiazolidinediones	VV	V	0.5 percent 1.4 percent	
DPP-4 inhibitors	V	VV	0.6 percent to 0.9 percent	
α -Glucosidase inhibitors	-	٧V	0.5 percent to 0.8 percent	
Colesevelam	V	V	0.5 percent	
Injectable agents				
GLP-1 agonists ⁺	V	√√√	0.5 percent to 1.5 percent	
Pramlintide	V	VVV	0.5 to1.0 percent	

Table 1. Differential effects of noninsulin antidiabetic agents on premeal and postmeal glucose[1-3]

Effects: —, none; V, mild; VV, moderate; VVV, marked

*Repaglinide has a more prominent effect on premeal glucose than nateglinide and also yields higher A1C reductions †Liraglutide has a more prominent effect on premeal glucose than exenatide and also yields higher A1C reductions

As shown in Table 1, agents that primarily reduce fasting glucose are generally associated with more robust A1C reductions. For this reason, agents that target postprandial hyperglycemia will not get patients to goal when added to existing therapy if the baseline A1C is > 8 percent. However, given the disproportionate contribution of postprandial hyperglycemia to overall glucose at lower A1C levels, use of therapies that lower postmeal glucose can help achieve A1C targets. In a prospective study involving patients with type 2 diabetes and a baseline A1C \geq 7.5 percent, 64 percent of patients who met FPG (<100 mg/dL) but not PPG (<140 mg/dL) targets achieved an A1C <7 percent. In contrast, 94 percent of the patients who met both targets achieved the A1C goal.[4] Another reason to address postprandial glucose excursions is that they have been associated with endothelial dysfunction. [5-7]

The relative contributions of pre- and postmeal glycemia are important therapeutic considerations for two reasons:

- Different noninsulin antidiabetic agents affect different aspects of diurnal glycemia—some mainly lower fasting glucose, while others specifically target postprandial glucose (Table 1).
- An A1C level <7 percent may be difficult to achieve without incurring hypoglycemia unless a treatment strategy is used that addresses both fasting and postprandial glucose elevations.

Table 4. Mechanisms of Action of Noninsulin Antidiabetic Agents

Intervention	Machanism	Primary Target		
intervention	wechanism	Insulin Deficiency	Insulin Resistance	
Oral agents				
Sulfonylureas	Stimulate insulin secretion independent of glucose	V		
Metformin	Suppress Hepatic glucose output Increase glucose uptake in muscle		V	
Glinides*	Stimulate mealtime insulin secretion independent of glucose	v		
Thiazolidinediones (TZD's)	Increase glucose uptake in muscle and fat Suppress hepatic glucose output		V	
DPP-4 inhibitors	Stimulate glucose-dependent insulin secretion Suppress postprandial glucagon and hepatic glucose output	V		
α-Glucosidase inhibitors	Slow carbohydrate absorption from intestine			
Colesevelam	Slow absorption from intestine	_	_	
Injectable agents				
GLP-1 agonists†	Stimulate glucose-dependent insulin secretion Suppress postprandial glucagon and hepatic glucose output Delay gastric emptying Enhance satiety	v		
Pramlintide	Suppress postprandial glucagon and hepatic glucose output Delay gastric emptying Enhance satiety			

*Repaglinide has a more prominent effect on premeal glucose than nateglinide and also yields higher A1C reductions †Liraglutide has a more prominent effect on premeal glucose than exenatide and also yields higher A1C reductions References:

1.athan DM, Buse JB, Davidson MB, et al. Medical Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy. A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetes Care.* 2009;32:193. [abstract]

2. Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology Consensus Panel on Type 2 Diabetes Mellitus: An Algorithm for Glycemic Control. *Endocr Pract.* 2009;15:540. [abstract]

3. Blonde L, Russell-Jones D. The safety and efficacy of liraglutide with or without oral antidiabetic drug therapy in type 2 diabetes: an overview of the LEAD 1-5 studies. *Diabetes Obes Metab.* 2009;11(suppl 3):26-34. [abstract]

4. Woerle HJ, Neumann C, Zschau S, et al. Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes: importance of postprandial glycemia to achieve target A1C levels. *Diabetes Res Clin Pract.* 2007;77:280-5. [abstract]

5. DECODE Study Group. Is the current definition of diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? *Diabetes Care.* 2003;26:688. [abstract]

6. Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, Anfossi G, Costa G, Trovati M. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. *J Clin Endocrinol Metab.* 2006;9:813. [abstract]

7. Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. *Circulation*. 1998;97:1695. [abstract]

www.diabetesincontrol.com C